

¹⁹F NMR Investigations of the Reaction of B(C₆F₅)₃ with Different Tri(alkyl)aluminum Compounds

Christoph Janiak,* Paul-Gerhard Lassahn

Summary: Tris(pentafluorophenyl)borane, B(C₆F₅)₃ reacts with triethylaluminum, AlEt₃ to a mixture of Al(C₆F₅)_{3-n}Et_n and Al₂(C₆F₅)_{6-n}Et_n compounds depending on the B/Al ratio. From excess borane to excess AlEt₃ the species Al(C₆F₅)₃ → Al(C₆F₅)₂Et ⇌ Al₂(C₆F₅)₄Et₂ → Al₂(C₆F₅)₃Et₃ → Al₂(C₆F₅)₂Et₄ → Al₂(C₆F₅)Et₅ are formed and differentiated by their *para*-F signal in ¹⁹F NMR. The reaction between B(C₆F₅)₃ and the higher aluminum alkyls, tri(iso-butyl)aluminum and tri(*n*-hexyl)aluminum AlR₃ (R = *i*-Bu, *n*-C₆H₁₃) is slower and requires AlR₃ excess to shift the C₆F₅ ↔ R exchange equilibria to almost complete formation of Al(C₆F₅)R₂ and BR₃. At equimolar ratio the equilibrium lies on the side of the unchanged borane together with its boranate [B(C₆F₅)₃R]⁻ anion. For tri(*n*-octyl)aluminum even at large Al(*n*-C₈H₁₇)₃ excess no C₆F₅ ↔ alkyl exchange can be observed, but boranate anions form.

Keywords: aluminium alkyl; borane; cocatalyst; ¹⁹F NMR perfluorinated

Introduction

The synthesis of tris(pentafluorophenyl)borane, B(C₆F₅)₃ was first described in the 1960s^[1] but the properties of B(C₆F₅)₃ including the strong Lewis acidity were not investigated further and no applications of C₆F₅-substituted boranes were reported. Beginning in the early 1990s it was discovered^[2] that group 4 metallocene alkyls in combination with B(C₆F₅)₃ led to highly active catalysts for olefin polymerization and opened the possibility to isolate crystallographically characterizable cationic metallocene complexes.^[2–4] As an alternative to methylalumoxane (MAO),^[5] perfluorinated boranes and boranates B(C₆F₅)₃,^[2] [Ph₃C]⁺[B(C₆F₅)₄]⁻,^[6] and [HNRR'₂]⁺[B(C₆F₅)₄]⁻^[7] can be key components of homogeneous single-site olefin polymerization catalyst systems.^[3,4,8] Furthermore, aluminum alkyls which are less efficient

activators themselves, are often added to such a single-site borane-containing polymerization system and used as scavengers or *in-situ* alkylating reagents.^[4] The B(C₆F₅)₃/AlEt₃ cocatalytic system is known from the activation process of early transition-metal group 4 metallocene catalysts in olefin polymerization.^[4,9] The application of perfluorinated boranes with aluminum alkyls as a two-component cocatalytic system raises the question of the actual constitution of the activator. An intricate knowledge on the cocatalytic composition is a prerequisite to investigate the activation process and to determine the structure of the active species in the polymerization. Reactions of boranes with aluminum alkyls, AlR₃ or zinc dialkyls, ZnR₂ have been observed.^[10,11] The combination of B(C₆F₅)₃ and AlMe₃ reacts by a facile aryl/alkyl group exchange to give Al(C₆F₅)₃ and BMe₃ as the main products (eq. 1).^[12,13] Comparable exchange reactions have been observed between E(C₆F₅)₃ (E = Al, B) and MAO^[14] and in the reaction of AlR₃ with [Ph₃C]⁺[B(C₆F₅)₄]⁻.^[12] These exchange reactions between the main group alkyls are different from the reactions of (perfluoroaryl)boron compounds, B(Ar^F)₃

Institut für Anorganische und Analytische Chemie,
Universität Freiburg, Albertstr. 21, D-79104 Freiburg,
Germany
Fax (+49) 761 2036147
E-mail: janiak@uni-freiburg.de

with group 4 metallocene alkyls, Cp_2MR_2 ($\text{M} = \text{Ti, Zr, Hf}$) which result in the formation of ionic or zwitterionic products $[\text{Cp}_2\text{MR}]^+[\text{R-B}(\text{Ar}^F)_3]^-$ from alkyl abstraction.^[3,4,8,15]

Concomitant with our interest in the vinyl addition norbornene polymerization, where we use nickel and palladium complexes with MAO or $\text{B}(\text{C}_6\text{F}_5)_3/\text{AlEt}_3$ cocatalysts,^[16,17] we followed the interactions between $\text{B}(\text{C}_6\text{F}_5)_3$ and different aluminum trialkyls to elucidate the composition of the activator for the transition-metal pre-catalysts. The $\text{B}(\text{C}_6\text{F}_5)_3/\text{AlEt}_3$ cocatalytic system was recently also applied by others to activate late transition-metal complexes for the (co)polymerization of cyclopentene,^[18] ethene,^[19] norbornene and norbornene derivatives.^[20,21]

Here we report the results of ^{19}F NMR investigations on the interaction between $\text{B}(\text{C}_6\text{F}_5)_3$ and the aluminum trialkyls tri(ethyl)aluminum (TEA, AlEt_3), tri(*isobutyl*)aluminum (TIBA, $\text{Al}(i\text{-Bu})_3$), tri(*hexyl*)aluminum (THA, $\text{Al}(n\text{-C}_6\text{H}_{13})_3$) and tri(*octyl*)aluminum (TOA, $\text{Al}(n\text{-C}_8\text{H}_{17})_3$). The ^{19}F NMR investigations were carried out with different molar $\text{B}(\text{C}_6\text{F}_5)_3:\text{AlR}_3$ ratios ($\text{R} = \text{C}_2\text{H}_5$, *i*- C_4H_9 , *n*- C_6H_{13} , and *n*- C_8H_{17}) which cover the range applied in polymerization procedures.^[16,21]

Reaction Between $\text{B}(\text{C}_6\text{F}_5)_3$ and AlEt_3

A molar ratio of $\text{B}(\text{C}_6\text{F}_5)_3:\text{AlEt}_3 = 1:9$ is typically reported when $\text{B}(\text{C}_6\text{F}_5)_3$ is applied in combination with AlEt_3 as a cocatalyst to activate late transition metal complexes.^[16,21] The ^{19}F NMR spectra for the reaction between $\text{B}(\text{C}_6\text{F}_5)_3$ and AlEt_3 at different molar ratios $\text{B}(\text{C}_6\text{F}_5)_3:\text{AlEt}_3$ between 10:3 and 1:10 are depicted in Figure 1. The interpretation is provided in Figure 1 in combination with Figure 2. The assignment of the signals is based on ^{19}F NMR literature^[10–13] with consideration of the applied molar B:Al ratios. It should be noted that the exact addition of low amounts

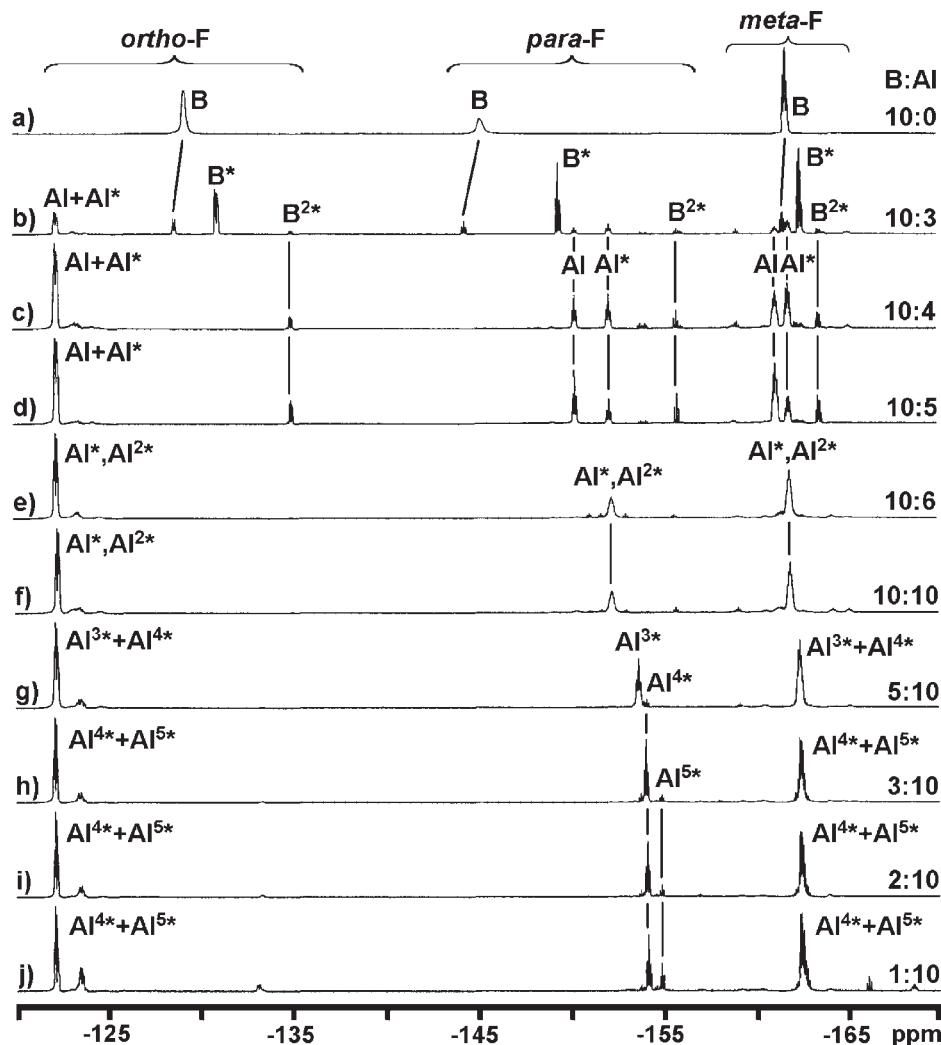
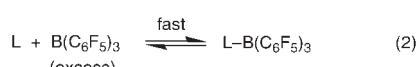
of AlEt_3 to $\text{B}(\text{C}_6\text{F}_5)_3$ was difficult, hence, for spectra b) to e) in Figure 1 the noted B:Al ratio is meant to reflect the trend.

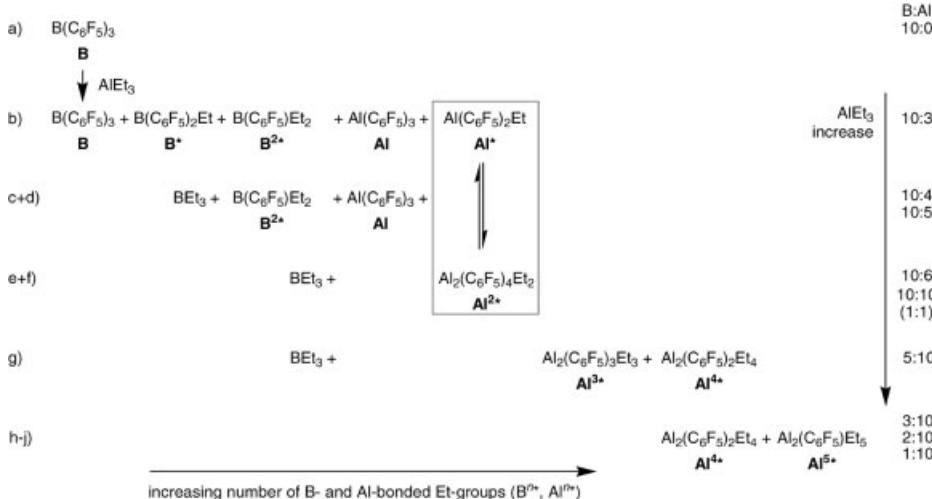
Reaction of $\text{B}(\text{C}_6\text{F}_5)_3$ with AlEt_3 leads to an exchange of the C_6F_5 and ethyl

groups. It can clearly be differentiated if the C_6F_5 group is bonded to boron or aluminum by the chemical shift region of the *ortho*- and *para*-F signal. Only the *meta*-F signal for $\text{B-C}_6\text{F}_5$ and $\text{Al-C}_6\text{F}_5$ overlap. Also, different $\text{B}(\text{C}_6\text{F}_5)_{3-n}\text{Et}_n$ species show quite different chemical shifts for the *ortho*- and *para*-F signal. For the $\text{Al}(\text{C}_6\text{F}_5)_{3-n}\text{Et}_n$ species the differentiation occurs mainly in the *para*-F and somewhat in the *meta*-F region. *Ortho*-F signals of $\text{Al}(\text{C}_6\text{F}_5)_{3-n}\text{Et}_n$ species appear all between –122.1 and –122.4 ppm (Figure 1). The signals itself are multiplets from F-F coupling which could only be partly resolved because of peak overlap. With excess $\text{B}(\text{C}_6\text{F}_5)_3$ the aluminum species $\text{Al}(\text{C}_6\text{F}_5)_3$ (**Al**) and $\text{Al}(\text{C}_6\text{F}_5)_2\text{Et}$ (**Al**^{*}) are observed (Figure 1 c-d, Figure 2).

When the B:Al ratio approaches 1:1, the signal attributed to (**Al**^{2*}) $\text{Al}_2(\text{C}_6\text{F}_5)_4\text{Et}_2 \rightleftharpoons \text{Al}(\text{C}_6\text{F}_5)_2\text{Et}$ (**Al**^{*}) is the only one remaining and broadens (Figure 1 d → f) either due to the high concentration or because the rate of the monomer-dimer equilibrium of tri(alkyl,aryl)aluminum compounds falls into the NMR time scale.^[22] Evidently, the exchange reaction between $\text{B}(\text{C}_6\text{F}_5)_3$ and AlEt_3 does not go to completion under the conditions of the NMR experiment to form $\text{Al}(\text{C}_6\text{F}_5)_3$ in a pure form. This behaviour has also been observed for the reaction between $\text{B}(\text{C}_6\text{F}_5)_3$ and AlMe_3 .^[13]

Noteworthy, the initial spectrum of neat $\text{B}(\text{C}_6\text{F}_5)_3$ also exhibits broad peaks (Fig. 1a) which sharpen and shift slightly upon addition of AlEt_3 (Fig. 1b). The broad peaks may be due to concentration (0.105 mmol = 53.8 mg/0.5 ml CD_2Cl_2). However, broad peaks may also originate from the presence of Lewis-base (L) impurities, such


Figure 1.

¹⁹F NMR spectra of $\text{B}(\text{C}_6\text{F}_5)_3/\text{AlEt}_3$ mixtures with increasing AlEt_3 content (decreasing B:Al ratio) from top to bottom. In the spectral assignments B^n* and Al^n* indicates the number of ethyl groups. For the spectral interpretation and exact symbol designations (B, B^* , Al, Al^* etc.) see Figure 2; further details in experimental section.

as, water which form adducts to $\text{B}(\text{C}_6\text{F}_5)_3$ without decomposition^[23] and enter in a fast equilibrium with free borane according to eq. 2, so that a weighted/averaged signal between the one for free $\text{B}(\text{C}_6\text{F}_5)_3$ and $\text{L-B}(\text{C}_6\text{F}_5)_3$ is measured.^[17] With the advent of the stronger Lewis acidic $\text{Al}(\text{C}_6\text{F}_5)_{3-n}\text{Et}_n$ species the Lewis-base impurities are removed from boron, so that the signals sharpen and shift.

With excess AlEt_3 the average number of C_6F_5 groups bonded to aluminum must decrease. Starting from the B:Al ratio of about 10:10 (1:1) where the peaks are assigned to the dimeric species $\text{Al}_2(\text{C}_6\text{F}_5)_4\text{Et}_2$ (Al^2*) in equilibrium with

Figure 2.

Interpretation of the ^{19}F NMR spectral changes upon increasing AlEt_3 content (decreasing B:Al ratio) in Figure 1. In the spectral assignments B^{n*} and Al^{n*} n indicates the number of ethyl groups. Note that BEt_3 and AlEt_3 do not give a signal in ^{19}F NMR.

its monomer $\text{Al}(\text{C}_6\text{F}_5)_2\text{Et}$ (Al^*), three different *para*-F peaks develop consecutively when going to a B:Al ratio of 1:10 (that is increasing AlEt_3) (Figure 1 f-j). Unfortunately, there is no species differentiation in the *ortho*- and *meta*-F signals. Going from Fig. 1f with B:Al = 10:10 to Fig. 1g with B:Al = 5:10 the *para*-signal assigned to (Al^{2*}) $\text{Al}_2(\text{C}_6\text{F}_5)_4\text{Et}_2 \rightleftharpoons \text{Al}(\text{C}_6\text{F}_5)_2\text{Et}$ (Al^*) disappears and a new major and minor multiplet occur at higher field. The major one is assigned to the sesqui compound $\text{Al}_2(\text{C}_6\text{F}_5)_3\text{Et}_3$ (Al^{3*}). Its signal disappears again when progressing to Fig. 1h with B:Al = 3:10 where the previously minor multiplett grows in intensity and now becomes the major one. This signal is assigned to $\text{Al}_2(\text{C}_6\text{F}_5)_2\text{Et}_4$ (Al^{4*}). Also in Fig. 1h a new minor *para*-signal develops at higher field from the major signal which continues to increase in intensity at the expense of its low-field neighbor when going over Fig 1i (B:Al = 2:10) to Fig 1j with B:Al = 1:10. This last signal seems to be due to $\text{Al}_2(\text{C}_6\text{F}_5)\text{Et}_5$ (Al^{5*}). Note the steady high-field shift of the *para*-F signal with increasing number of ethyl groups in the series $\text{Al}(\text{C}_6\text{F}_5)_3 \rightarrow \text{Al}(\text{C}_6\text{F}_5)_2\text{Et} \rightleftharpoons \text{Al}_2(\text{C}_6\text{F}_5)_3\text{Et}_3 \rightarrow \text{Al}_2(\text{C}_6\text{F}_5)_2\text{Et}_4 \rightarrow \text{Al}_2(\text{C}_6\text{F}_5)\text{Et}_5$.

In the typical $\text{B}(\text{C}_6\text{F}_5)_3:\text{AlEt}_3$ cocatalyst with a B:Al ratio of 1:9^[16,21] the active Lewis base species have to be formulated as $\text{Al}_2(\text{C}_6\text{F}_5)_2\text{Et}_4$ and $\text{Al}_2(\text{C}_6\text{F}_5)\text{Et}_5$ together with the monomeric form $\text{Al}(\text{C}_6\text{F}_5)\text{Et}_2$. Furthermore, the systematic ^{19}F NMR experiments have demonstrated that different C_6F_5 -substituted borane and aluminum species can be observed depending on the molar $\text{B}(\text{C}_6\text{F}_5)_3:\text{AlEt}_3$ ratio.

Reaction Between $\text{B}(\text{C}_6\text{F}_5)_3$ and AlR_3 ($\text{R} = i\text{-Bu, n-C}_6\text{H}_{13, n-C}_8\text{H}_{17}$)

The ^{19}F NMR spectra for the reactions between $\text{B}(\text{C}_6\text{F}_5)_3$ and AlR_3 at 1:1 molar ratios are presented in Figure 3. The spectrum of $\text{B}(\text{C}_6\text{F}_5)_3$ and $\text{Al}(i\text{-Bu})_3$ in Figure 3a is dominated by the signals of unreacted $\text{B}(\text{C}_6\text{F}_5)_3$ (**B**) at -128.7 ppm (*ortho*-F), -144.3 ppm (*para*-F), and -161.3 ppm (*meta*-F) (cf. Figure 1a). In addition, two sets of weak ^{19}F NMR signals are found in the spectrum which can be assigned to the borane species $\text{B}(\text{C}_6\text{F}_5)_2(i\text{-Bu})$ (**B**^{*}) and $[\text{B}(\text{C}_6\text{F}_5)_3(i\text{-Bu})]^-$ (**B**[–]) by comparison to $\text{B}(\text{C}_6\text{F}_5)_2\text{Et}$ and $[\text{B}(\text{C}_6\text{F}_5)_3\text{Et}]^-$ from

Figure 3.

^{19}F NMR spectra of $\text{B}(\text{C}_6\text{F}_5)_3/\text{AlR}_3$ mixtures at 1:1 molar ratios. The spectra were measured 12 min (a) and 10 min (b and c) after the addition of AlR_3 at room temperature. For the spectral interpretation and exact symbol designations (B, B^* , Al^{5*} etc.) see text and equations 3a-c; further details in experimental section.

$\text{ZnEt}_2/\text{B}(\text{C}_6\text{F}_5)_3$.^[11] For the anionic borane $[\text{B}(\text{C}_6\text{F}_5)_3(\text{i-Bu})]^-$, B^{*-} the sequence *ortho* – *para* – *meta* from low to high field is retained, despite the substantial shift of the *para*-F signal with respect to those of the neutral boranes. Very weak signals for an $\text{Al-C}_6\text{F}_5$ species can be seen upon spectral enlargement. The reaction between $\text{B}(\text{C}_6\text{F}_5)_3$

and $\text{Al}(\text{i-Bu})_3$ is summarized in eq. 3a. The cation required for B^{*-} is tentatively formulated as $[\text{Al}(\text{i-Bu})_2]^+$ although $[\text{AlR}_2]^+$ species free of donor ligands are not known. It is intriguing if such species with $\text{R} = \text{i-Bu}$, *n*-hexyl or *n*-octyl could be stabilized by $[\text{B}(\text{C}_6\text{F}_5)_3\text{R}]^-$ (B^{*-}). A transient species “ $[\text{AlMe}_2]^+ - [\text{B}(\text{C}_6\text{F}_5)_4]^-$ ” was formulated

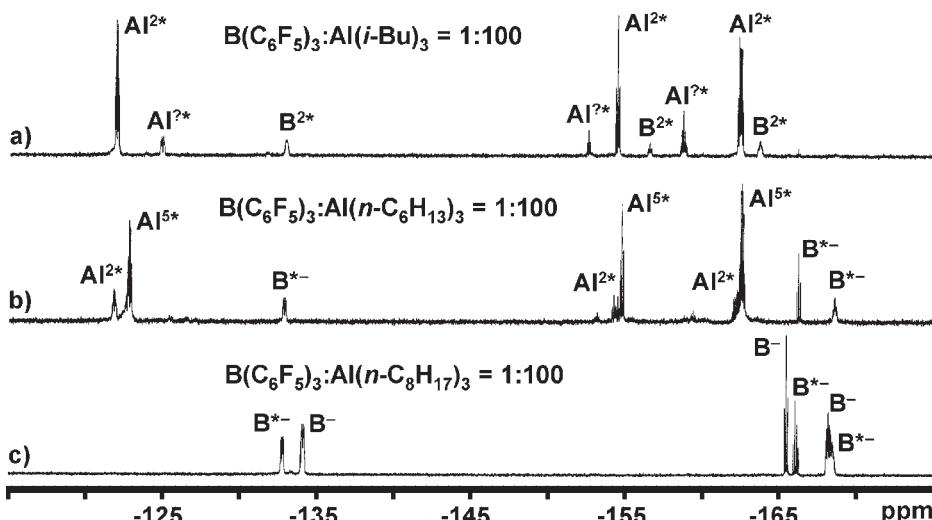
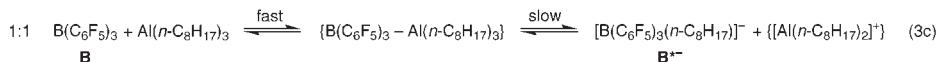
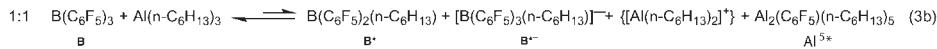
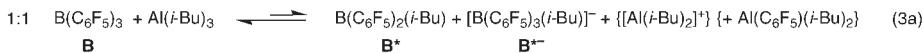


Figure 4.

^{19}F NMR spectra of $\text{B}(\text{C}_6\text{F}_5)_3/\text{AlR}_3$ mixtures at 1:100 molar ratios. The spectra were measured 1h 7min (a), 1h 29min (b), and 1h 19min (c) after the addition of AlR_3 at room temperature. For the spectral interpretation and exact symbol designations (B^{**} , Al^{2*} etc.) see text and equations 4a-c; further details in experimental section.




as part of the reaction between AlMe_3 and $[\text{CPh}_3]^+ \cdot [\text{B}(\text{C}_6\text{F}_5)_4]^-$ but found to immediately decompose to $\text{B}(\text{C}_6\text{F}_5)_3$ and $\text{Al}(\text{C}_6\text{F}_5)\text{Me}_2$. Yet, with more bulky R groups and in the presence of excess AlR_3 more stable $[\text{Al}_n\text{R}_{3n-1}]^+$ clusters may be envisaged.^[12]

The ^{19}F NMR spectrum of $\text{B}(\text{C}_6\text{F}_5)_3$ and $\text{Al}(n\text{-C}_6\text{H}_{13})_3$ (1:1) in Figure 3b is again dominated by the signals of unreacted $\text{B}(\text{C}_6\text{F}_5)_3$ (**B**), albeit with sharper peaks than in Figure 3a. As in Figure 3a, two sets of now more intense ^{19}F NMR signals can be assigned to the borane species $\text{B}(\text{C}_6\text{F}_5)_2(n\text{-C}_6\text{H}_{13})$ (**B**^{*}) and $[\text{B}(\text{C}_6\text{F}_5)_3(n\text{-C}_6\text{H}_{13})]^-$ (**B**^{**}). An additional set of signals at -122.7 ppm (*ortho*-F), -154.7 ppm (*para*-F), and -162.4 – -162.6 ppm (*meta*-F) can be identified by the low-field shift in the area of the *ortho*-F atom to an $\text{Al-C}_6\text{F}_5$ species. This provides evidence for a minor ligand exchange reaction. Based on the chemical shift of the *para*-F signal of -154.7 ppm the species is assigned as $\text{Al}_2(\text{C}_6\text{F}_5)(n\text{-C}_6\text{H}_{13})_5$ (**A**^{5*}) in comparison to $\text{Al}_2(\text{C}_6\text{F}_5)(\text{Et})_5$ (-154.9 ppm). Higher aluminum tri(*n*-alkyls), AlR_3 still dimerize in solution with little difference in the thermodynamic data for the monomer-dimer equilibria from $\text{R} = n\text{-propyl}$ to $n\text{-dodecyl}$.^[22] Unlike with AlEt_3 , no complete exchange reaction could be achieved with $\text{Al}(n\text{-C}_6\text{H}_{13})_3$ at equimolar ratio. Even after a reaction time of 15 h the spectrum was still dominated by the signals of unreacted $\text{B}(\text{C}_6\text{F}_5)_3$. The reaction between $\text{B}(\text{C}_6\text{F}_5)_3$ and $\text{Al}(n\text{-C}_6\text{H}_{13})_3$ is formulated in eq. 3b.

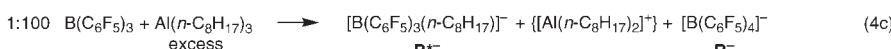
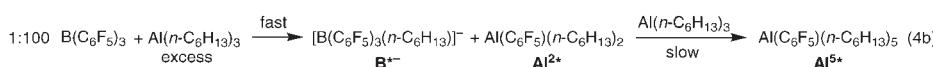
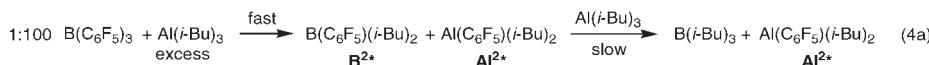
The spectrum of $\text{B}(\text{C}_6\text{F}_5)_3$ and $\text{Al}(n\text{-C}_8\text{H}_{17})_3$ (1:1) in Figure 3c shows only signals of unreacted $\text{B}(\text{C}_6\text{F}_5)_3$ and of

$[\text{B}(\text{C}_6\text{F}_5)_3(n\text{-C}_8\text{H}_{17})]^-$ (**B**^{**}). The signals of $\text{B}(\text{C}_6\text{F}_5)_3$ are significantly broadened which indicates that $\text{B}(\text{C}_6\text{F}_5)_3$ is part of an equilibrium system whose rate constant lies within the NMR time scale. We suggest an interaction in a pre-equilibrium with $\text{Al}(n\text{-C}_8\text{H}_{17})_3$ for the subsequent octyl group abstraction by the borane to yield **B**^{**}. During a reaction time of about 14 h no changes in the number and position of the signals including their intensity ratio were observed. The formation of $\text{Al-C}_6\text{F}_5$ species could not be detected from the reaction of $\text{B}(\text{C}_6\text{F}_5)_3$ and $\text{Al}(n\text{-C}_8\text{H}_{17})_3$. The reaction between $\text{B}(\text{C}_6\text{F}_5)_3$ and $\text{Al}(n\text{-C}_8\text{H}_{17})_3$ is given in eq. 3c.

The ^{19}F NMR spectra for the reactions between $\text{B}(\text{C}_6\text{F}_5)_3$ and AlR_3 at 1:100 molar ratios are collected in Figure 4. The spectrum of $\text{B}(\text{C}_6\text{F}_5)_3$ and $\text{Al}(i\text{-Bu})_3$ in Figure 4a now shows the result of the ligand exchange reaction in the form of two $\text{Al-C}_6\text{F}_5$ species, identified from the low field signals (<-125 ppm) in the *ortho*-F region. Based on the excess of $\text{Al}(i\text{-Bu})_3$ the major group of signals at -121.9 ppm (*ortho*-F), -154.4 ppm (*para*-F), and -161.4 ppm (*meta*-F) is assigned to $\text{Al}(\text{C}_6\text{F}_5)(i\text{-Bu})_2$ (**Al**^{2*}) since $\text{Al}(i\text{-Bu})_3$ (TIBA) is largely monomeric in solution and dimeric mostly in the solid state.^[22] The origin of the minor set of aluminum signals at -124.9 ppm (*ortho*-F), -152.6 ppm (*para*-F), and -158.7 ppm (*meta*-F) (**Al**^{2*}) is not quite clear. Possible species might be $[\text{Al}(\text{C}_6\text{F}_5)(i\text{-Bu})_3]^-$ or $[\text{Al}(\text{C}_6\text{F}_5)(i\text{-Bu})\text{H}]$ (from $\beta\text{-H}$ elimination and *iso*-butylene formation). In addition weak signals of $\text{B}(\text{C}_6\text{F}_5)(i\text{-Bu})_2$ (**B**^{2*}) could still be seen which indicates that the ligand exchange

does not rapidly go to completion. However the signals of \mathbf{B}^{2*} almost disappeared over a period of about 14 h whereas the intensity ratio between \mathbf{Al}^{*} and the uncertain species $\mathbf{Al}^{?*}$ stayed nearly constant over this period. The reaction between $\mathbf{B}(\mathbf{C}_6\mathbf{F}_5)_3$ and excess $\mathbf{Al}(i\text{-Bu})_3$ is given in eq. 4a.

Also, an excess of $\text{Al}(n\text{-C}_6\text{H}_{13})_3$ resulted in a nearly complete transfer of the C_6F_5 group from boron to aluminium according to the spectrum in Figure 4b. Two $\text{Al-C}_6\text{F}_5$ species can be identified. The major one is assigned to $\text{Al}_2(\text{C}_6\text{F}_5)(n\text{-C}_6\text{H}_{13})_5$ (A^{5*}) and was already seen in the 1:1 spectrum in Figure 3b. The signal intensities of A^{5*} increase with time at the expense of those of the minor $\text{Al-C}_6\text{F}_5$ species whose nature is again not fully clear. Its chemical shifts are typical for $\text{Al}(\text{C}_6\text{F}_5)\text{R}_n$. Perhaps the monomer-dimer equilibrium formation is slow on the NMR time scale so that the monomeric form $\text{Al}(\text{C}_6\text{F}_5)(n\text{-C}_6\text{H}_{13})_2$ (A^{2*}) as the direct reaction product from the group transfer continuous to exist independently. Only a small amount of C_6F_5 groups remained bonded to boron as the species $[\text{B}(\text{C}_6\text{F}_5)_3(n\text{-C}_6\text{H}_{13})]^-$ (B^{*-}). This boranate anion probably forms quickly after mixing of the reagents and is then kinetically inert because of its tetrahedral shape. Its signal intensities decreased only slowly over a period of 14 h. Equation 4b summarizes the reaction.




Surprisingly, the spectrum of $B(C_6F_5)_3$ and $Al(n-C_8H_{17})_3$ (1:100) in Figure 4c shows only two sets of $B-C_6F_5$ boronate signals: One set corresponds to

$[\text{B}(\text{C}_6\text{F}_5)_3(n\text{-C}_8\text{H}_{17})]^-$ (**B**^{*-}), as seen in Figure 3c) and the second, more intense set of signals is at -134.2 ppm (*ortho*-F), -165.3 ppm (*para*-F), and -168.1 ppm (*meta*-F, overlapping with *meta*-F of **B**^{*-}). These latter chemical shifts are close to those reported for $[\text{B}(\text{C}_6\text{F}_5)_4]^-$ (**B**⁻) with $[\text{RZn}(\text{OEt}_2)_3]^+$ cations (-133.6, -164.1, and -168.0 ppm), so that they are tentatively assigned to this species.^[11] The spectrum does not change over a time of 14 h. The formation of $[\text{B}(\text{C}_6\text{F}_5)_4]^-$ must somehow be catalyzed by $\text{Al}(n\text{-C}_8\text{H}_{17})_3$ or a derived $\{[\text{Al}(n\text{-C}_8\text{H}_{17})_2]^+\}$ cation but remains somewhat elusive. No transfer of a C_6F_5 group to aluminum can be observed. Following eq. 3c, the equilibria are now shifted to **B**^{*-} with excess $\text{Al}(n\text{-C}_8\text{H}_{17})_3$ (eq. 4c)

Experimental Part

General Procedures and Materials

All work involving air- and/or moisture-sensitive compounds was carried out by using standard vacuum, Schlenk or drybox techniques. NMR spectra were recorded with a Bruker Avance DPX 200 at 300 K and 188 MHz (^{19}F NMR, calibration against an external standard of CDFCl_2 check). The NMR experiments with air-sensitive materials were performed under inertgas-atmosphere using NMR tubes with screw caps (Wilmad) and Teflon-covered septa (Wheaton) and CD_2Cl_2 as solvent. Chemicals were supplied as follows and

used as received: CD_2Cl_2 by Deutero GmbH, $\text{B}(\text{C}_6\text{F}_5)_3$ by Aldrich, AlMe_3 solution in toluene or heptane ($2 \text{ mol} \cdot \text{L}^{-1}$) by Aldrich, AlEt_3 as a $1 \text{ mol} \cdot \text{L}^{-1}$ solution in hexane by Merck-Schuchardt, neat $\text{Al}(i\text{-Bu})_3$, $\text{Al}(n\text{-C}_6\text{H}_{13})_3$ and $\text{Al}(n\text{-C}_8\text{H}_{17})_3$ by Schering AG. A $0.5 \text{ mol} \cdot \text{L}^{-1}$ toluene solution was prepared for the use of $\text{Al}(i\text{-Bu})_3$, $\text{Al}(n\text{-C}_6\text{H}_{13})_3$ and $\text{Al}(n\text{-C}_8\text{H}_{17})_3$. Toluene was dried over sodium metal, distilled and stored under argon. Hexane was dried over potassium.

NMR Investigations of $\text{B}(\text{C}_6\text{F}_5)_3$ in Combination with AlEt_3

(a) Molar Ratio $\text{B}(\text{C}_6\text{F}_5)_3:\text{AlEt}_3 = 10:X$ ($X = 0, 3, 4, 5, 6, 10, 20$).

$\text{B}(\text{C}_6\text{F}_5)_3$ (0.105 mmol, 53.8 mg) was dissolved in CD_2Cl_2 (0.5 mL) and the corresponding amount of AlEt_3 ($1 \text{ mol} \cdot \text{L}^{-1}$ solution in hexane) was added via syringe. The ^{19}F NMR spectra were recorded approximately 10 min after the addition of AlEt_3 .

(b) Molar Ratio $\text{B}(\text{C}_6\text{F}_5)_3:\text{AlEt}_3 = X:10$ ($X = 1, 2, 3$). $\text{Al}(\text{C}_2\text{H}_5)_3$ (0.21 mmol, 0.21 mL of a $1 \text{ mol} \cdot \text{L}^{-1}$ solution in hexane) was added via syringe to the corresponding amount of $\text{B}(\text{C}_6\text{F}_5)_3$ dissolved in CD_2Cl_2 (0.5 mL). The ^{19}F NMR spectra were recorded approximately 10 min after the addition of AlEt_3 .

NMR Investigations of $\text{B}(\text{C}_6\text{F}_5)_3$ in Combination with $\text{Al}(i\text{-Bu})_3$ (TIBA), $\text{Al}(n\text{-C}_6\text{H}_{13})_3$ (THA) and $\text{Al}(n\text{-C}_8\text{H}_{17})_3$ (TOA)

(a) Molar Ratio $\text{B}(\text{C}_6\text{F}_5)_3:\text{AlR}_3 = 1:1$

The aluminum alkyl (0.05 mmol, 0.1 mL of a $0.5 \text{ mol} \cdot \text{L}^{-1}$ solution in toluene) was added via syringe to a solution of $\text{B}(\text{C}_6\text{F}_5)_3$ (0.05 mmol, 25.6 mg) in CD_2Cl_2 (0.5 mL). The ^{19}F NMR spectra were recorded 12 min, 42 min, 1 h 40 min, 2 h 19 min after the addition of $\text{Al}(i\text{-Bu})_3$, 10 min, 16 min, 36 min, 1 h 6 min, 2 h 24 min, 15 h 20 min after the addition of $\text{Al}(n\text{-C}_6\text{H}_{13})_3$, and 10 min, 16 min, 36 min, 57 min, 1 h

54 min, 14 h 25 min after the addition of $\text{Al}(n\text{-C}_8\text{H}_{17})_3$.

(b) Molar Ratio $\text{B}(\text{C}_6\text{F}_5)_3:\text{AlR}_3 = 1:100$

The neat aluminum alkyl (1.00 mmol, $d_{\text{TIBA}} = 0.789 \text{ g} \cdot \text{mL}^{-1} \Rightarrow 0.25 \text{ mL}$, $d_{\text{THA}} = 0.830 \text{ g} \cdot \text{mL}^{-1} \Rightarrow 0.34 \text{ mL}$, $d_{\text{TOA}} = 0.832 \text{ g} \cdot \text{mL}^{-1} \Rightarrow 0.44 \text{ mL}$) were added via syringe to a solution of $\text{B}(\text{C}_6\text{F}_5)_3$ (0.01 mmol, 2.6 mg) in CD_2Cl_2 (0.3 mL for TIBA and THA, 0.2 mL for TOA). NMR spectra were recorded 1 h 7 min, 1 h 40 min, 2 h 9 min, 14 h 35 min after the addition of $\text{Al}(i\text{-Bu})_3$, 20 min, 59 min, 1 h 29 min, 1 h 59 min, 14 h 5 min after the addition of $\text{Al}(n\text{-C}_6\text{H}_{13})_3$, and 12 min, 18 min, 48 min, 1 h 19 min, 13 h 35 min after the addition of $\text{Al}(n\text{-C}_8\text{H}_{17})_3$.

There were no changes in the peak positions over time only in their relative intensities. A complete listing of the chemical shifts and FF coupling constants for all spectra will be included in a full publication elsewhere.

Conclusions

Systematic ^{19}F NMR experiments have demonstrated that different C_6F_5 -substituted borane and aluminum species can be observed from the reaction of $\text{B}(\text{C}_6\text{F}_5)_3$ with AlEt_3 . From excess borane to excess AlEt_3 the species $\text{Al}(\text{C}_6\text{F}_5)_3 \rightarrow \text{Al}(\text{C}_6\text{F}_5)_2\text{Et} \rightleftharpoons \text{Al}_2(\text{C}_6\text{F}_5)_4\text{Et}_2 \rightarrow \text{Al}_2(\text{C}_6\text{F}_5)_3\text{Et}_3 \rightarrow \text{Al}_2(\text{C}_6\text{F}_5)_2\text{Et}_4 \rightarrow \text{Al}_2(\text{C}_6\text{F}_5)\text{Et}_5$ are formed and differentiated by their *para*-F signal. At a $\text{B}(\text{C}_6\text{F}_5)_3:\text{AlEt}_3$ ratio of 1:9, which is often used as cocatalytic system, the active Lewis base species have to be formulated as $\text{Al}_2(\text{C}_6\text{F}_5)_2\text{Et}_4$ and $\text{Al}_2(\text{C}_6\text{F}_5)\text{Et}_5$ together with the monomeric form $\text{Al}(\text{C}_6\text{F}_5)\text{Et}_2$.

The reaction between $\text{B}(\text{C}_6\text{F}_5)_3$ and higher aluminum alkyls AlR_3 ($\text{R} = i\text{-Bu}$, $n\text{-C}_6\text{H}_{13}$, $n\text{-C}_8\text{H}_{17}$) is not only thermodynamically but also kinetically controlled. At an equimolar ratio the (thermodynamic) equilibrium lies on the side of the unchanged borane together with its boranate $[\text{B}(\text{C}_6\text{F}_5)_3\text{R}]^-$ anion. At large AlR_3 excess the equilibrium is shifted to the group-exchange products BR_3 and $\text{Al}(\text{C}_6\text{F}_5)\text{R}_2$ for

$R = i\text{-Bu}$ and $n\text{-C}_6\text{H}_{13}$. Yet, the exchange is not quickly completed and the intermediate $B(\text{C}_6\text{F}_5)(i\text{-Bu})_2$ or the side product $[\text{B}(\text{C}_6\text{F}_5)_3(n\text{-C}_6\text{H}_{13})]^-$ can still be seen for some hours after mixing. For $R = n\text{-C}_8\text{H}_{17}$ even at large $\text{Al}(n\text{-C}_8\text{H}_{17})_3$ excess no $\text{C}_6\text{F}_5 \leftrightarrow$ alkyl exchange can be observed, but there is indication that a $[\text{B}(\text{C}_6\text{F}_5)_4]^-$ anion forms beside $[\text{B}(\text{C}_6\text{F}_5)_3(n\text{-C}_8\text{H}_{17})]^-$.

- [1] A. G. Massey, A. J. Park, F. G. A. Stone, *Proc. Chem. Soc.* **1963**, 212. A. G. Massey, A. J. Park, *J. Organomet. Chem.* **1964**, 2, 245. A. G. Massey, A. J. Park, *J. Organomet. Chem.* **1966**, 5, 218.
- [2] X. Yang, C. L. Stern, T. J. Marks, *J. Am. Chem. Soc.* **1991**, 113, 3623. X. Yang, C. L. Stern, T. J. Marks, *J. Am. Chem. Soc.* **1994**, 116, 10015.
- [3] R. F. Jordan, *Adv. Organomet. Chem.* **1991**, 32, 325. M. Bochmann, S. J. Lancaster, M. B. Hursthouse, K. M. A. Malik, *Organometallics* **1994**, 13, 2235. M. Bochmann, *Dalton Trans.* **1996**, 255. Y. X. Chen, C. L. Stern, S. Yang, T. J. Marks, *J. Am. Chem. Soc.* **1996**, 118, 12452. W. Kaminsky, M. Arndt, *Adv. Polym. Sci.* **1997**, 127, 144.
- [4] E. Y.-X. Chen, T. J. Marks, *Chem. Rev.* **2000**, 100, 1391.
- [5] H. Sinn, W. Kaminsky, *Adv. Organomet. Chem.* **1980**, 18, 99.
- [6] J. C. W. Chien, W.-M. Tsai, M. D. Rausch, *J. Am. Chem. Soc.* **1991**, 113, 8570.
- [7] X. Yang, C. L. Stern, T. J. Marks, *Organometallics* **1991**, 10, 840.
- [8] Reviews: H. H. Brintzinger, D. Fischer, R. Mühlhaupt, B. Rieger, R. M. Waymouth, *Angew. Chem. Int. Ed.* **1995**, 34, 1143. C. Janiak, "Metallocenes", (ed. A. Togni, R.L. Halterman) Wiley-VCH, Weinheim, **1998**, ch. 9, 547. R. F. Jordan, *J. Mol. Catal.* **1998**, 128, 1–337. A. L. McKnight, R. M. Waymouth, *Chem. Rev.* **1998**, 98, 2587. W. E. Piers, *Chem. Eur. J.* **1998**, 4, 13. T. J. Marks, J. C. Stevens, *Top. Catal.* **1999**, 7, 1. G. J. P. Britovsek, V. C. Gibson, D. F. Wass, *Angew. Chem. Int. Ed.* **1999**, 38, 428. H. G. Alt, A. Köppel, *Chem. Rev.* **2000**, 100, 1205. G. G. Hlatky, *Coord. Chem. Rev.* **2000**, 199, 235. G. W. Coates, *J. Chem. Soc., Dalton Trans.* **2002**, 467. C. Janiak, *Metallocene Catalysts in Kirk-Othmer Encyclopedia of Chemical Technology Online Edition* 2002, DOI: 10.1002/0471238961.1305200110011409.a01, <http://www.mrw.interscience.wiley.com/kirk/articles/metajani.a01/frame.html>
- [9] G. H. Hlatky, H. W. Turner, R. R. Eckman, *J. Am. Chem. Soc.* **1989**, 111, 2728. G. H. Hlatky, R. R. Eckman, H. W. Turner, *Organometallics* **1992**, 11, 1413. US 5668234 (1997) B.F. Goodrich Company, USA, invs. S. Collins, L. F. Rhodes, B. L. Goodall, *Chem. Abstr.* **1997**, 127, 263591s. I. Tritto, R. Donetti, M. C. Sacchi, P. Locatelli, G. Zannoni, *Macromolecules* **1997**, 30, 1247.
- [10] J. S. Kim, L. M. Wojcinski, S. Liu, J. C. Sworen, A. Sen, *J. Am. Chem. Soc.* **2000**, 122, 5668.
- [11] D. A. Walker, T. J. Woodmann, D. L. Hughes, M. Bochmann, *Organometallics* **2001**, 20, 3772.
- [12] M. Bochmann, M. J. Sarsfield, *Organometallics* **1998**, 17, 5908.
- [13] J. Klosin, G. R. Roof, E. Y. X. Chen, K. A. Abboud, *Organometallics* **2000**, 19, 4684.
- [14] C. H. Lee, S. J. Lee, J. W. Park, K. H. Kim, B. Y. Lee, J. S. Oh, *J. Mol. Catal., A: Chem.* **1998**, 132, 231.
- [15] G. Erker, *Acc. Chem. Res.* **2001**, 34, 309.
- [16] C. Janiak, P.-G. Lassahn, *J. Mol. Catal. A: Chem.* **2001**, 166, 193. P.-G. Lassahn, C. Janiak, J. S. Oh, Z. *Naturforsch. B* **2001**, 56b, 1289. C. Janiak, P.-G. Lassahn, *Polym. Bull.* **2002**, 47, 539. Berchtold, V. Lozan, P.-G. Lassahn, C. Janiak, *J. Polym. Sci. Part A: Polym. Chem.* **2002**, 40, 3604. P.-G. Lassahn, C. Janiak, J. S. Oh, *Macromol. Rapid Commun.* **2002**, 23, 16. V. Lozan, P.-G. Lassahn, C. Zhang, B. Wu, C. Janiak, G. Rheinwald, H. Lang, Z. *Naturforsch. B* **2003**, 58b, 1152. P.-G. Lassahn, C. Tzschucke, W. Bannwarth, C. Janiak, Z. *Naturforsch. B* **2003**, 58, 1063. P.-G. Lassahn, V. Lozan, G. A. Timco, P. Christian, C. Janiak, R. E. P. Winpenny, *J. Catalysis* **2004**, 222, 260. C. Janiak, P.-G. Lassahn, V. Lozan, *Macromol. Symp.* **2006**, this issue.
- [17] P.-G. Lassahn, V. Lozan, C. Janiak, *Dalton Trans.* **2003**, 927. P.-G. Lassahn, V. Lozan, B. Wu, A. S. Weller, C. Janiak, *Dalton Trans.* **2003**, 4437.
- [18] S. J. McLain, J. Feldman, E. F. McCord, K. H. Gardner, M. F. Teasley, E. B. Coughlin, K. J. Sweetman, L. K. Johnson, M. Brookhart, *Macromolecules* **1998**, 31, 6705.
- [19] B. Y. Lee, G. C. Bazan, J. Vela, Z. J. A. Komon, X. Bu, *J. Am. Chem. Soc.* **2001**, 123, 5352.
- [20] D. A. Barnes, G. M. Benedikt, B. L. Goodall, S. S. Huang, H. A. Kalamardis, S. Lenhard, L. H. McIntosh III, K. T. Selvy, R. A. Shick, L. F. Rhodes, *Macromolecules* **2003**, 36, 2623.
- [21] US 5912313 (1999), B.F. Goodrich Company, USA, invs. L. H. McIntoshIII, B. L. Goodall, R. A. Shick, J. Saikumar; *Chem. Abstr.* **1997**, 127, 110414m. US 5705503 (1998), B.F. Goodrich Company, USA, invs. B. L. Goodall, W. Risso, J. P. Mathew; *Chem. Abstr.* **1997**, 126, 104553u. US 5677405 (1997), B.F. Goodrich Company, USA, invs. B. L. Goodall, L. H. McIntoshIII, D. A. Barnes; *Chem. Abstr.* **1997**, 126, 104554v. WO 9856839, (1998), B.F. Goodrich Company, USA, invs. B. L. Goodall, L. H. McIntosh III; *Chem. Abstr.* **1999**, 130, 66911g. US 6232417 (2001), B.F. Goodrich Company, USA, invs. J.-H. Lipian, A. Bell, B. L. Goodall, L. F. Rhodes, R. A. Shick, J. Saikumar; *Chem. Abstr.* **1999**, 130, 252843m. US 6265506 (2001), B.F. Goodrich Company, USA, invs. B. L. Goodall, L. H. McIntosh III; *Chem. Abstr.* **2001**, 135, 122919h.
- [22] J. J. Eisch, *Comprehensive Organometallic Chemistry* **1982**, 1, 555. M. E. O'Neill, K. Wade, *Comprehensive Organometallic Chemistry* **1982**, 1, 1.
- [23] C. Janiak, L. Braun, T. G. Scharmann, F. Girgsdies, *Acta Crystallogr. C* **1998**, 54, 1722. R. T. Stibany, P. Brant, *Acta Crystallogr. C* **2001**, 57, 644. C. Bergquist, B. M. Bridgewater, C. J. Harian, J. R. Norton, R. A. Friesner, G. Parkin, *J. Am. Chem. Soc.* **2000**, 122, 10581.